Amino-functionalized silica nanoparticles with center-radially hierarchical mesopores as ideal catalyst carriers.

نویسندگان

  • Xin Du
  • Junhui He
چکیده

Our previously fabricated amino-functionalized silica nanoparticles (NPs) with center-radially hierarchical mesopores (NH(2)-HMSNs) were purified by a filtration membrane and used as catalyst carriers in the current article. Noble metal NPs (Au, Pd, Pt and Au & Pt) with small sizes (3-8 nm) were successfully immobilized into the NH(2)-HMSNs via the deposition-precipitation method. These noble metal NPs with readily adjusted small sizes have high density and well-dispersed distribution on the surface of large mesopores of NH(2)-HMSNs. Among them, Au-NH(2)-HMSNs were investigated as the composite catalyst in the catalytic reduction of 2-nitroaniline (2-NA) as a model reaction and exhibited excellent catalytic activity and stability. The presence of center-radially large mesopores in the NH(2)-HMSNs may favor the loading of noble metal NPs with high density and well-dispersed distribution on the surface of large mesopores of NH(2)-HMSNs. Metal-NH(2)-HMSNs may be more promising composite catalysts due to their superstructure of center-radially hierarchical mesopores that maybe significantly enhance and harmonize the diffusion of guest molecules of different sizes through the porous matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amino Functionalized Silica Coated Fe3O4 Magnetic Nanoparticles as a Novel Adsorbent for Removal of Pb2+ and Cd2+

The present study synthesizes a novel adsorbent by coating Fe3O4 magnetic nanoparticles with amino functionalized mesoporous silica. The FTIR spectrums indicate that silica has been successfully coated on the surface of Fe3O4 and 3-aminopropyl tri methoxysilane compound have been grafted to the surface of silica-coated Fe3O4. The XRD analysis shows the presence of magnetite phase with cubic spi...

متن کامل

Amino Functionalized Silica Coated Fe3O4 Magnetic Nanoparticles as a Novel Adsorbent for Removal of Pb2+ and Cd2+

The present study synthesizes a novel adsorbent by coating Fe3O4 magnetic nanoparticles with amino functionalized mesoporous silica. The FTIR spectrums indicate that silica has been successfully coated on the surface of Fe3O4 and 3-aminopropyl tri methoxysilane compound have been grafted to the surface of silica-coated Fe3O4. The XRD analysis shows the presence of magnetite phase with cubic spi...

متن کامل

Encapsulation of enzyme in large mesoporous material with small mesoporous windows.

Trypsin has been encapsulated in the mesopores of a hierarchical mesoporous silica material synthesized via Cu(I) catalyzed azide-alkyne click reaction between azide functionalized large spherical SBA-15 particles and alkyne functionalized mesoporous silica nanoparticles (MSNs). Encapsulated trypsin functions as an efficient biocatalyst and can be recycled several times.

متن کامل

Preparation of Catalytic Nanoparticles in Mesoporous Silica Film for Oriented Growth of Single-Walled Carbon Nanotubes

Vertically oriented single-walled carbon nanotubes (SWNTs) attract considerable attention, because it is expected as an ideal field emitter that can realize lower threshold voltage and higher electric current than microtips of Si or metals. In this study, we aim that SWNTs are vertically oriented using mesoporous silica film as a guide of the growth for SWNTs. For the orientation, the catalyst ...

متن کامل

Chondroitin sulfate functionalized mesostructured silica nanoparticles as biocompatible carriers for drug delivery

Mesoporous silica nanoparticles (MSNs) have garnered a great deal of attention as potential carriers for therapeutic payloads. Here, we report a pH-responsive drug-carrier based on chondroitin sulfate functionalized mesostructured silica nanoparticles (NMChS-MSNs) ie, the amidation between NMChS macromer and amino group functionalized MSNs. The prepared nanoparticles were characterized using dy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 4 3  شماره 

صفحات  -

تاریخ انتشار 2012